PI Vijay Gorantla, John Galeotti, George Stetten

Co Investigator Michael Davis

Title 3D Video Augmented High-Resolution Ultrasound Imaging for Monitoring Nerve Regeneration and Chronic Rejection after Composite Tissue Allotransplantation
Description: This technology has direct relevance to the FY13 PRMRP topic area of Composite Tissue Transplantation. During the past decade, more than 100 hand and facial transplants have been performed around the world, including over 90 with encouraging outcomes. The University of Pittsburgh is one of the key centers for these exciting new surgical procedures. Key to their success is the timely regrowth of nerves into the new transplanted tissue before muscle has time to degenerate, and the survival of vital arteries that tend to thicken with chronic rejection of the transplant, putting transplanted tissue at risk. Monitoring nerves and arteries is thus essential for appropriate measures to be taken in time and, in the research setting, it is required so that new therapies can be developed. To be safe, monitoring of nerves and arteries in these patients must not involve taking biopsies. Imaging techniques using ultrasound are promising because of their safety and low cost, and recent advances in ultrasound resolution have made subtle changes in nerves and arteries more easily visualized. However, ultrasound still suffers from an inability to accurately record where in a patient a given ultrasound scan has been acquired. The knowledge of scan location is particularly important for comparing ultrasound scans from one month to the next, and from one patient to another.

We have been developing a technology called ProbeSight to determine and record the location of the ultrasound probe in terms of the particular anatomical structures being scanned. Just as the operator holding the ultrasound probe knows where the scan is being taken by looking at it, so it is possible with a special camera to determine that location automatically. The camera will be mounted directly on the ultrasound probe so that it looks toward the patient. ProbeSight will compare what its camera sees with its own internal “memory” of the patient’s overall appearance. The ProbeSight system can provide a valuable record of location information along with the ultrasound data, so that changes to nerves and arteries at a given place in the patient can be monitored from one day, week, or month to the next.

Our proposal has three major aims: to develop the ProbeSight technology from an engineering standpoint, (2) to validate the accuracy and reliability of the technology to determine probe location on artificial phantoms, normal human arms, and the abnormal arms of patients after hand-surgery, and (3) to validate the use of video localized ultrasound images to monitor changes in nerves and arteries over time, after a nerve injury or a hand transplant has occurred.

Our technology is inherently safe, economical, non-invasive, reliable and reproducible. It will facilitate understanding the condition of nerves and arteries after injury and during healing, helping to determine a more timely and accurate treatment strategy. It will provide clinicians and researchers serving patients with hand-transplants and nerve injuries an important new ability to follow nerve regeneration and chronic rejection, enabling effective comparisons across patients and across time. Furthermore, it will offer early diagnosis and preventative management of many other conditions highly relevant to the screening, diagnostic, and therapeutic strategies directed at rehabilitating and restoring functionality in our war-wounded.

Source: PRMRP Department of Defense

Term 10/1/2014 – 9/30/2017

Amount $646,196 total